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Review
Neuroimaging findings are often interpreted in terms of
affective experience, but researchers disagree about the
advisability or even possibility of such inferences, and few
frameworks explicitly link these levels of analysis. Here,
we suggest that the spatial and temporal resolution of
functional magnetic resonance imaging (fMRI) data could
support inferences about affective states. Specifically, we
propose that fMRI nucleus accumbens (NAcc) activity is
associated with positive arousal, whereas a combination
of anterior insula activity and NAcc activity is associated
with negative arousal. This framework implies quantifi-
able and testable inferences about affect from fMRI data,
which may ultimately inform predictions about approach
and avoidance behavior. We consider potential limits on
neurally inferred affect before highlighting theoretical and
practical benefits.

Background and definitions
Although Galileo Galilei did not invent the telescope, he
did refine its resolution enough to visualize the orbiting
moons of Jupiter, allowing him to overthrow the then
dominant geocentric view of the universe. Galileo’s incre-
mental innovation illustrates that inventing new mea-
sures is not sufficient to promote scientific advance; the
resolution of those measures must also match the scale of
the phenomenon of interest.

More recently, researchers have developed methods with
enhanced resolution for peering not only into outer space,
but also into inner space. Given that mental states can
change rapidly, capturing their traces requires temporal
as well as spatial precision. Different neuroimaging techni-
ques have historically presented varying tradeoffs between
temporal and spatial resolution. Whereas electroencepha-
lography (EEG) provides good temporal resolution (e.g.,
approximately milliseconds), electrodes outside the skull
have limited spatial resolution, particularly for signals that
emanate from below the cortex. Conversely, whereas posi-
tron emission tomography (PET) affords subcortical spatial
resolution (e.g., approximately millimeters), its temporal
resolution is limited (e.g., approximately minutes or more).
Near the end of the 20th century, fMRI grew in popularity,
partially because it offered both spatial resolution (e.g.,
approximately millimeters, even for subcortical regions)
and temporal resolution (e.g., approximately seconds).
The spatiotemporal resolution of fMRI may better match
1364-6613/

� 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tics.2014.04.006

Corresponding author: Knutson, B. (knutson@psych.stanford.edu).
Keywords: accumbens; insula; positive; negative; arousal; affect; human; neuroimaging.

422 Trends in Cognitive Sciences, August 2014, Vol. 18, No. 8
that of neural activity associated with some psychological
phenomena, including affective experience.

Along with the rising popularity of fMRI, scientific inter-
est in the neural basis of affect also increased. Since Wilhelm
Wundt’s prescient writing over a century ago, ‘affect’ has
referred to a broad range of phenomena including mood,
emotion, and motivation (differing in their duration, causes,
and consequences) [1]. Over 100 years of psychometric
analyses of self-reported emotional experience have vindi-
cated Wundt’s claim that affect varies along at least two
independent dimensions: valence (running from good to bad)
and arousal (running from high to low) [2]. Whereas statis-
tical analyses alone cannot specify which rotation of these
dimensions best describes affective space [3], later theorists
advocated a 458 rotation of the valence and arousal axes,
transforming them into dimensions of ‘positive arousal’
(running from feelings of excitement to boredom) and ‘nega-
tive arousal’ (running from feelings of anxiety to calm) [4].
Indeed, most sensory stimuli (e.g., olfactory, gustatory,
auditory, or visual) invoke a ‘V’-like pattern of affective
reactions that falls along these positive arousal and negative
arousal dimensions [5]. These dimensions also conveniently
align affect, motivation, and behavior in such a way that
positive arousal in response to uncertain gains can promote
approach behavior, whereas negative arousal in response to
uncertain losses instead can promote avoidance behavior
(Figure 1) [6,7]. By temporal extension, these ‘anticipatory
affective’ states may promote short-term survival as well as
long-term adaptation. Beyond merely neatly summarizing
descriptions of affective experience, then, positive arousal
and negative arousal dimensions could reflect the underly-
ing activity of distinct brain circuits that generate affective
experience and behavior [8].

Challenge and approach
A critical theoretical challenge for affective neuroscience
involves identifying neural generators of human affective
experience and behavior [9,10]. A method for inferring
affect from fMRI data could help researchers to address
this challenge. Furthermore, given that practical applica-
tions of neuroimaging (e.g., in health or choice) often
ultimately seek to infer experiences or behaviors from
brain activity, the question may not be so much whether
to make inferences, but rather how to make the best
inferences. Fortunately, affective space not only implies
tools for measuring affective experience, but also a scheme
for linking neural activity to affective experience. Based on
the geometry of affective space, we propose a quantifiable
and testable mapping of fMRI activity onto affective expe-
rience and behavior. However, is such a mapping even
possible and, if so, how could it be implemented?
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Figure 1. An affective circumplex, emphasizing continua from positive arousal to

approach and from negative arousal to avoidance.

Box 1. Extracting fMRI data

Although comprehensive summaries of standard fMRI analyses

exist (e.g., [18]), extracting raw data from small subcortical regions

requires special considerations that may deviate from typical

analysis pathways, as detailed below.

Quality assurance

Given the small subject samples involved and high cost of fMRI, a

few outliers can seriously corrupt statistical analyses (e.g., motion

or spiking artifacts can introduce outliers that deviate by orders of

magnitude). Even after motion correction, we recommend removing

data in which the brain moves greater than half a voxel from one

volume acquisition to the next, or censoring data that deviate from

the average by more than three standard deviations [35].

Derivation of percent signal change

Given that fMRI data produces arbitrary intensity units, only relative

rather than absolute changes in activity (against a background of

noise) can be inferred. To enhance the comparability of changes in

activity between regions, after filtering the data to remove long

temporal trends, one can calculate measures of ‘percent signal

change’ by subtracting the average activity across an entire experi-

ment in a given voxel from the activity at a given time point and then

dividing by the average activity over time multiplied by 100.

Averaging and extracting activity

Based on previous meta-analyses of brain foci implicated in antici-

patory affect (see above), one can specify 8-mm diameter spherical

volumes of interest around NAcc (e.g., x = �10, y = 10, z = –2) and

anterior insula (e.g., x = �33, y = 23, z = –4) foci in standardized

space (e.g., Talairach space [6]). In the event of individual differences

in cortical localization, these volumes of interest can be adjusted in the

right–left and superior–inferior planes to fit anatomical landmarks

based on higher resolution colocalized structural scans (e.g., [36]).

Percent signal change can then be averaged within each volume of

interest and then peak activity occurring 4–6 s after an event of interest

can be selected (e.g., an incentive cue presented during the MID task).

Review Trends in Cognitive Sciences August 2014, Vol. 18, No. 8
Some have argued that mapping brain activity to affec-
tive experience constitutes a technically impractical or
even conceptually impossible task. Technically, Poldrack
[11] suggested that the apparent lack of functional speci-
ficity of some brain regions limits inferences that can be
drawn from their activity. Affective processes (e.g., arous-
al) may occur more generally than specific cognitive pro-
cesses associated with symbolic representation (e.g.,
language production), and so appear in the context of many
different tasks. Furthermore, by reducing the number of
brain features and affective features under consideration,
investigators can enhance inferential sensitivity and mini-
mize potentially spurious findings. Conceptually, after
reviewing failures of past neuroimaging studies to consis-
tently associate human brain activity with emotional
responses, Lindquist and colleagues [12] recommended
that scientists abandon attempts to link local brain activity
to emotional experiences (see also [13]). However, the
spatial and temporal resolution of neuroimaging methods
and the sophistication of analytic tools continue to improve
with each passing year, and previous failures may merely
reflect historical limitations in the resolution of designs,
acquisition, and analyses.

Others have implicitly or explicitly endorsed affective
inference from fMRI data. For instance, Singer et al. [14]
suggested that insular activity correlates with feelings of
general arousal [14], and Paulus and Stein [15] more
specifically argued for a role of the insula in the experience
of negative arousal. Knutson and Greer [6] further sug-
gested that NAcc activity specifically correlates with posi-
tive arousal. Although these claims imply that inferring
affect from fMRI data is possible, none have specified
exactly how neural markers might combine to support
affective inference.

Affective inference from fMRI data would ideally involve
data acquisition at the appropriate spatial resolution and a
matching temporal resolution. Deep brain stimulation and
lesion findings in animals and humans suggest that activi-
ty in subcortical circuits generates affective experience and
behavior [9,16]. However, many fMRI studies have not
implemented sufficiently focused design, acquisition, or
analysis protocols to resolve activity in small subcortical
circuits [17]. Furthermore, whereas affective states can
shift on a second-to-second basis (possibly consistent with
changes in neurotransmitter firing rates), most fMRI study
designs and analyses lack sufficient temporal resolution to
resolve these rapid changes in brain activity. Thus, most
existing fMRI studies have not acquired neural data at
sufficient spatial resolution or affect data at a matching
temporal resolution. These mismatches in measurement
may partially account for historically mixed results in
studies that seek to infer affect from fMRI data.

To explore links between fMRI activity and affect, we
focus here on anticipatory affect, which involves both
arousal and valence, and which should ultimately promote
approach or avoidance behavior [6]. Many (but not all)
studies investigating anticipatory affect utilize monetary
incentives, which enable investigators to distinguish be-
tween neural responses correlated with affective valence
versus arousal. Some of these studies have also assessed
brain activity in small subcortical circuits as well as
attempted to probe affect on a second-to-second timescale.

Mapping fMRI data to affect
To infer affect from fMRI data, we propose three ‘recipes’
for: (i) acquiring and preprocessing fMRI data (Box 1); (ii)
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Box 2. Measuring affective responses

The architecture of affective space implies independent dimensions

of valence and arousal, which can arbitrarily be rotated. Quality

assurance measures might include excluding data from subjects

who report no affective variation across an entire range of

experimental stimuli. To derive measures of positive arousal and

negative arousal, we mean-deviate and rotate valence and arousal

ratings as described below:

(i) Mean-deviate valence and arousal ratings across stimuli within

each subject;

(ii) Project these ratings onto 458 rotated positive arousal and

negative arousal axes as follows: positive arousal = (arousal +

valence)/sqrt(2); and negative arousal = (arousal – valence)/

sqrt(2).

Arousal and valence probes can be obtained either during an

experiment or afterwards, in reference to specific experimental

events. Instruction in the meaning and use of the ratings can

improve comprehension (i.e., supplement). Acquiring arousal and

valence ratings in response to several events for each subject can

enhance interpretability and reduce response biases, because the

raw ratings are initially converted to relative ratings within subject

before transformation [27]. Note that, although these measures

implicitly assume that affective experience can be accessed by

conscious introspection, they do not assume that affect requires

insight (similar to psychophysical studies of visual perception).
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Figure 2. Meta-analytic results for activity in nucleus accumbens (NAcc; white

circles) and anterior insula (black circles) during incentive anticipation. Activation

likelihood estimate maps adapted from Figure 3 in [21] superimposed onto the

affective circumplex [from right to left: positive minus negative subjective value

(SV), positive subjective value, positive plus negative subjective value, and

negative subjective value].
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acquiring and preprocessing affect data (Box 2); and (iii)
matching and inferring affect from fMRI data (Box 3). All
proposed transformational mapping schemes are informed
by the geometry of affective space.

Methods for fMRI data acquisition and analysis contin-
ue to evolve. One popular analytic approach involves con-
trasting fMRI activity from different conditions across the
entire brain to identify which regions show differential
involvement [18]. Here, we instead adopt a more basic
approach of identifying volumes of interest based on pre-
vious findings, followed by averaging and extracting raw
data. Whereas some meta-analyses of fMRI studies may
not have implicated coherent circuits in emotional catego-
ries (e.g., [12]), others have clearly implicated a remark-
ably consistent set of brain regions in incentive
anticipation. Specifically, several meta-analyses have im-
plicated the NAcc and sometimes the medial prefrontal
cortex (MPFC) in anticipation of gains, but the anterior
insula and sometimes medial caudate in anticipation of
losses as well as gains [6,19–22] (e.g., Figure 2). Based on
these findings, we first extract data from NAcc and anterior
insula volumes of interest associated with incentive antic-
ipation to map to anticipatory affect, thereby first reducing
the number of features in the neuroimaging data (Box 1;
MFPC and medial caudate data were also explored, but
either failed to improve or degraded derived solutions, and
so were not included).

Neuroimaging researchers understandably often pay
closer attention to measurement of brain activity than to
measurement of affect. Affect measurement minimally
requires assessing valence and arousal (or rotations of
these dimensions) in response to specific stimuli or events,
either during or after an experiment. As with fMRI activi-
ty (Box 1), an individual’s relative affective response to
different experimental stimuli can be calculated by sub-
tracting their averaged affective response across all items
from their affective response to each item. Thus, relative
424
affective impact can be compared in a manner similar to
relative regional brain activity in fMRI data (Box 2).

To link brain activity and affect, the most straightfor-
ward scheme might involve mapping two neural mecha-
nisms directly onto two independent dimensions of
affective space (for instance, NAcc to positive arousal
and anterior insula to negative arousal). However, the
combined meta-analytic evidence to date suggests a less
separable (yet still tractable) mapping [6,19–22]. Whereas
NAcc activity includes both valence and arousal compo-
nents, thus potentially mapping onto positive arousal,
anterior insula activity primarily carries an arousal com-
ponent, thus only partially mapping onto negative arousal.
However, given knowledge of the approximate relative
position of the two brain activity vectors in affective space
(e.g., an approximately 458 offset) and a few simplifying
assumptions, these two spaces can be mapped to derive
inferences about positive arousal and negative arousal by
combining NAcc and anterior insula activity (Box 3;
Figure 3).

Testing the mapping
Can the proposed mapping work in theory? Consistent
with the anticipatory affect model, when humans playing
the monetary incentive delay (MID) task anticipated large
uncertain gains, they showed increased NAcc and anterior
insula activity and reported experiencing increased posi-
tive arousal, but when they anticipated large uncertain
losses, they only showed increased anterior insula activity
and reported experiencing increased negative arousal [6].
Applying the proposed transformations to changes in fMRI
activity typically observed in the MID task (Box 3), if gain
cues increase NAcc activity by 0.1% and also increase
anterior insula activity by 0.1%, then neurally inferred
positive arousal increases by 1 point, whereas inferred
negative arousal increases only by 0.20 points (see ‘A’ in
Figure 3).
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Figure 3. Neurally inferred positive arousal and negative arousal from nucleus

accumbens (NAcc) and anterior insula (Ant Ins) activity.

Box 3. Mapping fMRI data to affect

We seek to infer positive arousal and negative arousal from NAcc

and anterior insula activity. Assuming that NAcc activity maps onto

positive arousal and that anterior insula activity maps onto general

arousal, and multiplying by an arbitrary scaling factor (here, k � 10)

to scale from percent signal change to rating points suggests the

following transformations:

(i) neurally inferred positive arousal = NAcc activity * k;

(ii) neurally inferred negative arousal = (Anterior insula activity –

(NAcc activity/sqrt(2))/sqrt(2)) * k

Note that, because anterior insula activity maps onto general

rather than negative arousal, a component of NAcc activity is

subtracted from anterior insula activity to derive neurally inferred

negative arousal. Thus, the transformations remap neural activity

on valence and arousal dimensions to positive arousal and negative

arousal dimensions via projection. Although a 458 rotation is initially

assumed, angular parameters could be empirically tested and

modified on the basis of future findings to accommodate greater or

lesser degrees of rotation (e.g., [37]). If brain and self-report data are

acquired at a similar temporal resolution, the fit of neurally inferred

affect to self-reported affect could be compared across experimental

conditions, either relative to chance or an existing benchmark (e.g.,

using classification and cross-validation techniques).
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Do the proposed transformations map onto experimen-
tal findings? Data drawn from 12 healthy young subjects
who completed the MID Task (age range = 20–50 years)
provided both cue-elicited brain activity and cue-elicited
affect ratings (data for this subsample were drawn from a
larger published lifespan sample described in [23]). During
the MID task, subjects saw cues indicating that they could
gain or lose US$0.00, US$1.00, or US$5.00 by responding
to a subsequent rapidly presented target with a button
press. fMRI activity was extracted from NAcc and anterior
insula volumes of interest 6 s after the presentation of each
cue and averaged by cue type, whereas affect ratings in
response to each cue type were acquired immediately
following the experiment.

Replicating patterns of brain activity previously ob-
served in the MID task [6,21], anticipation of large gains
increased NAcc activity (relative to the nonincentive con-
ditions; P < 0.01), whereas anticipation of both large gains
and large losses increased anterior insula activity relative
to the nonincentive conditions (P < 0.05). For affective
ratings, anticipation of large and medium gains increased
positive arousal relative to the nonincentive conditions
(P < 0.01), whereas anticipation of large and medium
losses increased negative arousal relative to the nonincen-
tive conditions (P < 0.05). fMRI activity was then trans-
formed into neurally inferred affect (using the functions
described in Box 3). For neurally inferred affect, anticipa-
tion of large gains increased inferred positive arousal
relative to the nonincentive conditions (P < 0.01), whereas
anticipation of large losses increased inferred negative
arousal relative to the nongain (P < 0.05) but not the
nonloss condition, approximating patterns observed in
affect ratings (i.e., black versus gray lines in Figure 4).
Finally, across conditions, nonparametric permutation
tests (n = 100 000 repetitions) revealed a significant asso-
ciation of neurally inferred positive arousal with rated
positive arousal (slope = 0.58, P < 0.05), as well as a trend
towards an association of neurally inferred negative arous-
al with rated negative arousal (slope = 0.29, P < 0.10)
across conditions (Figure 4).
Concluding remarks and implications
The proposed mapping of fMRI data to affect produces
interpretable initial results when applied to ideal as well
as actual group data. The goal of this preliminary mapping
is not to provide a comprehensive or final scheme, but
rather an initial step towards inferring affect from fMRI
data. Here, rather than pursuing a ‘broad’ account across
any single level of analysis (e.g., chemistry, fMRI activity,
affect, or motivated behavior), we instead seek to establish
a few ‘deep’ links between adjacent levels of analysis (i.e.,
fMRI activity and affect). Once established, these links can
then be enriched and elaborated in terms of breadth within
each level of analysis as well as in terms of depth across
multiple levels of analysis (e.g., Figure 5). If the proposed
links replicate and generalize, they could lay a foundation
for inferring affect from fMRI data. However, validating
such a mapping first requires a framework that generates
quantifiable, directional, and testable predictions.

The relatively straightforward mapping from NAcc ac-
tivity to positive arousal has been described in several
studies (reviewed in [6]). This mapping suggests that affect
arises during anticipation of uncertain incentives, and not
just in response to incentive outcomes, therefore moving
beyond consequentialist theories by indicating that neural
mechanisms generate affect during anticipation as well as
in response to outcomes [24]. Given that anticipatory affect
can occur before choice, associated neural markers may
best predict eventual choice. The link between subcortical
activity in the NAcc and positive arousal further implies
that some affective states may be conserved across mam-
malian species and development, and need not invoke
reflective processes associated with higher cortical input
(e.g., [13]). Consistent with this line of reasoning, dopa-
mine (but not norepinephrine) selectively innervates ante-
rior parts of the NAcc and its synaptic availability
fluctuates on a second-to-second basis. Dopamine release
has been speculated to increase NAcc fMRI activity [25], a
prediction that can now be directly evaluated with new
neuroscience tools (e.g., optogenetics [26]).
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Figure 4. Neurally inferred versus rated affect (n = 12; mean � SEM; lines indicate significantly different conditions), and associations of neurally inferred with rated affect

across incentive conditions. Abbreviations: NA, negative arousal; PA, positive arousal.
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The mapping from anterior insula activity to negative
arousal is less straightforward. As suggested by meta-
analytic findings (and to the surprise of many researchers),
localizing fMRI activity strictly associated with negative
arousal has proven more elusive than that associated with
positive arousal. This more ambiguous mapping may re-
sult from either conceptual factors (e.g., greater diversity
in highly arousing negative emotions) or physiological
factors (e.g., involvement of more diverse neurotransmit-
ters and target regions), or both. Regardless, by assuming
partial independence of the projections of anterior insula
and NAcc activity onto affective space, fMRI activity from
these regions might still support inferences about negative
arousal (Figure 5). Unlike the anterior NAcc, the anterior
insula is innervated by both dopamine and norepineph-
rine, both of which likely vary from second to second.
Extending the previous logic, release of both dopamine
and norepinephrine may account for increased but nonspe-
cific anterior insula fMRI activity observed during antici-
pation of gains and losses [6].

Activity from other brain regions commonly associated
with affective responses (e.g., amygdala or prefrontal cor-
tex) do not as reliably appear in meta-analyses of fMRI
activity during incentive anticipation, and activity
extracted from these regions did not improve affective
inferences using the current scheme, but nonetheless de-
serve future exploration. Other small subcortical regions
may have more direct roles in generating negative arousal,
426
but have historically been difficult to visualize with fMRI
(e.g., the ventromedial hypothalamus and periaqueductal
gray), and these also deserve further scrutiny.

The proposed mapping raises a host of possibilities for
development. With respect to fMRI activity, activity from
other regions (mentioned above) could be added to aug-
ment existing predictions. For instance, regions involved in
value integration (e.g., the medial prefrontal cortex [27]) or
reflection (e.g., the dorsal medial prefrontal cortex [28])
might directly or indirectly influence links between fMRI
activity and affect. New multivariate techniques could also
be used to determine whether patterned activity or altered
connectivity provides additional information about affect
(e.g., [29]). Spatial and temporal noise can corrupt fMRI
data, and so analyses using new feature selection algo-
rithms with noise penalties might improve neural infer-
ences about affect (e.g., [30]). Beyond group inference, the
power of the proposed scheme to illuminate individual
differences could also be explored. Perhaps most impor-
tantly, the proposed mapping must be generalized to other
scenarios (e.g., affective responses to outcomes), and tasks
that evoke less specific and controlled shifts in affect.

Opportunities also exist for improving the measure-
ment of affect. Assessment of self-reported affect often
requires trading semantic coverage (e.g., number of items)
against temporal precision (e.g., density of items). By using
dimensional probes, investigators can briefly survey most
of affective space with just two strategically chosen items
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Figure 5. Proposed mapping of constructs across levels of analysis (ascending

levels from inner to outer include neurochemistry, functional magnetic resonance

imaging activity, affective experience, and motivated behavior). Abbreviations:

AIns, anterior insula; DA, dopamine; NA, negative arousal; NAcc, nucleus

accumbens; NE, norepinephrine; PA, positive arousal.
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(see also [31]). Interrupting subjects during an affectively
engaging task, however briefly, may still alter existing
affect. Furthermore, humans may fail to accurately report
past affective experiences for several reasons, including
but not limited to: failing to pay attention; forgetting what
was experienced; reporting a different intervening affec-
tive state; reconstructing experience based on scripts or
rules; being unwilling to report socially undesirable experi-
ences; or a simple lack of reflective capacity. Fortunately,
rapidly probing affect in response to relevant events can
minimize some of these problems, as can comparing affec-
tive responses across several different events. Perhaps
most importantly, investigators should seek to match
the temporal specificity of affect probes to that afforded
by fMRI data.

Although the current scheme links brain activity in a
constrained set of regions to affect, it does not yet extend to
dynamic changes in affect or more specific emotions. How-
ever, once static mappings are established, they could be
temporally extended to track ‘affect dynamics’ online [32],
which might provide information about the trajectory and
duration of affective episodes. Whereas researchers have
traditionally thought of emotions as points in affect space,
affect dynamics might provide richer tools for describing
affective or emotional episodes (e.g., sufficient movement
up and to the left might imply anxiety, movement straight
to the left might imply anger, and movement down and to
the left might imply sadness). Affect dynamics could also
inform researchers about not only momentary changes in
affect, but also individual differences in affective trajecto-
ries over time, with potential implications for diagnosing
and tracking psychiatric symptoms.

Mapping fMRI activity to affect could yield both theo-
retical and practical benefits. Theoretically, such a map-
ping could make affective inference from fMRI data more
testable and quantitative. Mappings may also resolve
currently conflicting interpretations of fMRI data. For
instance, researchers have debated about whether NAcc
activity reflects valence or salience (which could be
reframed as arousal; e.g., [33]). The current scheme implies
that NAcc activity reflects both valence and arousal, and
additionally suggests the novel prediction that NAcc activ-
ity can vary independently of negative arousal (e.g., feel-
ings such as anxiety and tension). Furthermore, because
fMRI activity changes from second to second, affective
inference from fMRI activity might offer a glimpse into
dynamics of affect that have historically eluded measure-
ment. One interesting challenge involves the possibility
that fMRI activity might in some cases provide a more
accurate index of affective responses than self-report. Giv-
en that positive arousal aligns with approach behavior and
negative arousal aligns with avoidance behavior, affective
inference should extend not only to self-reported affective
experience, but also to eventual behavior. Practically,
mapping fMRI activity to affect could complement existing
self-report measures of affective experience. As people
primarily visit psychiatrists due to a lack of excitement
or an excess of distress, these tools might prove useful for
predicting psychiatric diagnoses and monitoring therapeu-
tic progress. Additionally, because subjective reactions
rather than objective perceptions drive behavior, these
tools may prove useful for understanding which features
of a proposition most powerfully motivate choice (e.g., to
make a purchase or investment). Thus, principled infer-
ences could help realize the potential of affective neurosci-
ence to improve human health and well-being.

For Galileo, matching the resolution of his method (the
telescope) to the phenomenon of interest (the movement of
Jupiter’s moons) yielded a scientific breakthrough. Al-
though scientists do not yet know the best resolution for
linking brain activity and affect, research suggests that
second-to-second changes in the activity of small subcorti-
cal circuits powerfully and unconditionally elicit affective
behavior [34]. By matching the resolution of neural and
affective measures, researchers can begin to map links
between brain activity and affect in humans. In the future,
scientists may track affect dynamics with the same facility
that astronomers traced the trajectories of moons through
outer space, with similarly revolutionary consequences for
our understanding of inner space.
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